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1 Identifying Demand and Supply Equations Using

Sign-Restricted VARs

This section discusses the framework we use in our empirical application to identify

demand and supply equations in the S&P 500 index option market. This approach is

known as the pure-sign restriction vector autoregression (VAR). It was initially proposed

by Uhlig (2005). Denote the vector of prices and quantities by yt = (pt qt)
′. The

reduced-form VAR with l lags, VAR(`), is given by:

yt = α +B1yt−1 +B2yt−2 + ...+B`yt−` + ut (A.1)

where ut is the reduced-form residual, a (2× 1) vector with covariance matrix E[utu
′
t] =

Σu. Bi is a (2 × 2) matrix of coefficients, with i ∈ (1, ..., `), and α is a (2 × 1) vector of

constants. We thus have a system of two equations with price and quantity as the endoge-

nous variables. The demand and supply equations must be identified by decomposing the

residuals ut into orthonormal structural or fundamental shocks. Specifically, the map-

ping from the orthonormal fundamental shocks εt, with E[εtε
′
t] = I, to the residual ut is

through the matrix A, as follows:

ut = Aεt ⇒ Σu = E[utu
′
t] = AE[εtε

′
t]A’ = AA’. (A.2)

Identification of structural shocks is thus equivalent to identification of this impact

matrix A. In order to identify the first equation as a supply equation and the second

equation as a demand equation, the pure-sign restriction approach imposes the following

sign restrictions on the elements of the matrix A:[
uPt

uQt

]
=

[
a11 a12

a21 a22

][
εSt

εDt

]
=

[
− +

+ +

][
εSt

εDt

]
(A.3)

The first column of A assumes that a positive supply shock (a right shift of the supply

curve) results in a lower price pt and a higher quantity qt. The sign restrictions on the

second column of A assume that positive demand shock (a right shift of the demand

curve) results in an increase in both price and quantity (Uhlig, 2017). These assumptions

impose only the most basic economic intuition. Note also that we only impose sign

restrictions on the contemporaneous responses of price and quantity to demand and

supply, which is a very conservative assumption. Other applications are more restrictive.

For instance, Uhlig (2005) discusses how to impose restrictions on the responses over

longer horizons by checking the signs of the relevant impulse response functions.

This sign-restriction identification approach differs from the more traditional VAR

identification scheme known as recursive identification, where one imposes a Cholesky
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decomposition on the covariance matrix Σu such that chol(Σu) = L, i.e. Σu = LL’,

and ut = Lεt.
1 Although this decomposition is unique, it implicitly imposes a relative

exogeneity ranking on the endogenous variables in the VAR. Specifically, because the

impact matrix L is a lower triangular matrix, if we order price before quantity in the

vector Yt, recursive identification imposes price as an exogenous variable in the system,

whereas quantity is endogenous, and vice versa. When there are more than two variables

in the VAR, one needs to take a stance on which variables are more or less exogenous;

hence this is referred to as a relative exogeneity ranking.

In our empirical application, we do not use a relative exogeneity ranking between

prices and quantities and instead, use the pure-sign restriction identification approach on

the matrix A. Every matrix A such that Σu = AA’ can be expressed as a permutation

of the Cholesky matrix through an orthonormal matrix Q: A = LQ. Identifying the

matrix A is thus equivalent to identifying the matrix Q. After identifying the impact

matrix A, we can recover the structural shocks εt = A−1ut and the slopes of the demand

and supply curves, which henceforth we refer to as βS and βD. However, the admissible

matrix A is not unique; the estimation of the shocks and the coefficients of the system is

based on the average of the estimates obtained for all admissible matrices A.

We implement the resulting estimation of the pure-sign restricted VAR using a Bayesian

approach, following Uhlig (2005). This approach can be summarized in six steps. First,

we estimate the reduced-form VAR(`) using ordinary least squares (OLS), where the

optimal number of lags ` is chosen based on Bayesian Information Criterion (BIC):[
pt

qt

]
=

[
αS

αD

]
+

[
bPS1 bQS1

bPD1 bQD1

][
pt−1

qt−1

]
+ ...+

[
bPS` bQS`
bPD` bQD`

][
pt−`

qt−`

]
+

[
uSt

uDt

]
(A.4)

Second, we assume a diffusive conjugate Normal-Wishart prior for (B,Σu), where B =

[α,B1, ..., Bl], and take 100 draws from the posterior over B and Σu. Third, for each draw

of Σu, we take 1,000 draws of an orthonormal matrix Q that is drawn uniformly from

the unit circle, using QR factorization. Fourth, we compute the candidate impact matrix

Am = LQ, where L is the lower triangular Cholesky decomposition for each draw of Σu.

We then verify if Am satisfies the sign restrictions of Equation A.3 and discard the draws

that violate the sign restriction. Fifth, for each retained Am, we recover the structural

shocks εt = Am
−1ut, and calculate the demand and supply slopes. The relation between

the impact matrix A and the demand and supply slopes (βS and βD) is derived as follows.

Pre-multiplying both sides of Equations (A.4) by the matrix F = A−1 to arrive at the

1On the recursive VAR approach, see for instance Sims (1980, 1986); Bernanke (1986); Blanchard
and Watson (1986). The microstructure literature employs this approach when estimating vector au-
toregressions to investigate the impact of order flow on prices (Hasbrouck, 1991, 1993).
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structural VAR, we get:2 [
f11 f12

f21 f22

][
pt

qt

]
= ...+

[
εSt

εDt

]
(A.5)

This matrix expression corresponds to the following system of equations:f11pt + f12qt = ...+ εSt (Supply)

f21pt + f22qt = ...+ εDt (Demand)
⇐⇒

pt = −f12
f11
qt + ... (Supply)

pt = −f22
f21
qt + ... (Demand)

(A.6)

Once we identify the impact matrix A, we calculate the slopes of the demand and supply

curves:

• The supply curve P(Q) has the slope βS = −f12
f11

= −−a12
a22

= a12
a22

(>= 0)

• The demand curve P(Q) has the slope βD = −f22
f21

= − a11
−a21 = a11

a21
(<= 0)

Because of the imposed sign restrictions, we obtain a positive supply slope and a negative

demand slope. In the final (sixth) step of the estimation procedure, we calculate the mean

for all variables of interest from the retained draws.

The extended VAR which includes additional risk factors imposes the following re-

strictions on the impact matrix A:
uPt

uQt

uReturn
t

u∆V IX
t

u∆Skew
t

 = A


εSt

εDt

εReturn
t

ε∆V IX
t

ε∆Skew
t

 =


− + ∗ ∗ ∗
+ + ∗ ∗ ∗
0 0 ∗ ∗ ∗
0 0 ∗ ∗ ∗
0 0 ∗ ∗ ∗




εSt

εDt

εReturn
t

ε∆V IX
t

ε∆Skew
t

 (A.7)

We do not constrain the contemporaneous effect of the risk measures on prices and

quantities because we want to infer it from the data. We also do not impose restrictions

on the contemporaneous relation between the risk measures. The optimal number of lags

is again determined using the BIC.

To estimate this extended VAR system, we implement the modified procedure in Arias,

Rubio-Ramı́rez, and Waggoner (2013) and Kilian and Lütkepohl (2017) which is designed

to estimate VARs identified by a mix of sign and exclusion restrictions. Compared to the

baseline estimation, the only additional step is to draw 1,000 orthogonal matrices Q such

that A = LQ satisfies the exclusion restrictions, prior to verifying the sign restrictions

on candidate matrices A. The supply and demand slopes can again be computed using

elements of the (inverse of) A, similar to the ratios specified in Equation (A.6).

2Note that matrix F =

[
f11 f12
f21 f22

]
= A−1 = 1

a11a22−a12a21

[
a22 −a12
−a21 a11

]
and εt = A−1ut = Fut.
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2 The Sign-Restricted VAR Approach: Discussion

In this section, we first discuss some important issues regarding the interpretation of the

results from the sign-restricted VAR approach. Then we explore the full distribution of

the slopes and elasticities across the retained draws and the convergence of the estimation

approach. See Kilian and Lütkepohl (2017) and Fry and Pagan (2011) for a comprehensive

review of the sign-restricted VAR methodology.

2.1 Interpreting the Results from Sign-Restricted VARs

Our estimation procedure relies on rejecting the generated contemporaneous impulse

responses if they fail specific sign restrictions. The question therefore arises how to

interpret the rejection rate. Sign-identified VAR models are set-identified, rather than

point-identified. This implies that multiple admissible structural models can generate the

data. The discarding procedure sign-restricts the impulse responses and eliminates draws

based on economic intuition in search of an economically plausible model. The rejection

rate is therefore not a measure of the quality of the identification (Kilian and Lütkepohl,

2017). A high rejection rate may signal that alternative models may provide a better fit,

but it can also indicate that the true model indeed satisfies the sign restrictions; a high

rejection rate can thus be indicative of sharp identification when additional information

is introduced between the models in the admissible set (Uhlig, 2017). Our retaining rate

of about 45% is actually rather high compared to many other applications; for instance

Kilian and Murphy (2012) report a retaining rate of approximately 2.1%.

The literature has proposed alternative refinements to reduce the set of admissible

models: Informative priors on the matrix A (Baumeister and Hamilton, 2015, 2019); Use

the model which is closest to the median (Fry and Pagan, 2011); Use the mode of the

distribution of admissible models (Inoue and Kilian, 2013). However, these approaches

require the researcher to have a strong prior on what the best model is and what extreme

cases to be excluded. We therefore proceed by retaining all admissible models in our

empirical analysis and report the means for the slope estimates, structural shocks, IRFs,

and the forecast error variance decomposition. We next provide additional insight into

model uncertainty by discussing the full distribution of the retained slopes and elasticities.

2.2 The Distribution of the Admissible Set

Figure A.1 plots the histograms of the distribution of demand and supply slopes in the

ATM SPX put market from our base case analysis.3 Recall that a slope is obtained for

each draw of the matrix A. Note that the distribution has a very long tail, and that the

3We present results for put options; the findings for call options are similar.
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distribution mass concentrates around positive (negative) but small values for the supply

(demand) slope; both distributions appear to be highly skewed.

Figure A.1: Histograms of Supply and Demand Slopes Based on Retained
Draws

We plot the histograms of the distribution of demand and supply slope estimates based on

100,000 draws for ATM put options. The red vertical line indicates the value of the slope which

corresponds to unit elasticity. The demand slope distribution has a very long tail; we therefore

collapse all values with elasticity smaller than one in the green bar on the left of the vertical

line, to make the figure more readable.

The average demand slope estimate is almost four times bigger in magnitude than the

average supply slope estimates: 22 × 10−4 versus 6 × 10−4. The supply slope estimates

that correspond to elasticities smaller than one take up only a very small portion (18

observations out of 47,627 retained draws).4 This means that there are very few admis-

sible models which imply an inelastic supply curve, and we conclude that the supply of

market-makers is elastic. In contrast, for the demand slope we have many extreme values

corresponding to elasticities smaller than one.

Figure A.2 provides more detail on the distribution of the demand and supply elastici-

4The red vertical line indicates the value of the slope for which we have unitary elasticity. We collapse
all the values corresponding to elasticities of less than one in the green bar on the right of the vertical
line to make the figure easier to read.
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ties for the elastic and inelastic cases separately.5 Figure A.2 shows that the supply curves

are almost always highly elastic. The elastic demand case, which represents 95.58% of

the distribution, is representative of the full retained draws sample. For inelastic demand

draws, the supply curve is much more elastic (average elasticity of 225) than in the case

of elastic demand draws. The case of inelastic demand and very elastic supply (the top-

right plot in Figure A.2) corresponds to the null hypothesis of a flat supply curve and

a vertical demand curve. Although these cases are economically meaningful, they occur

infrequently (4.42% of cases). Indeed, the median estimates of the slopes are very similar

across sub-samples.6 This motivates us to focus on the mean, rather than the median, of

the slope estimates. While the clusters in the tail of the slope estimates do not occur too

frequently, they remain economically meaningful.

2.3 Convergence

This section investigates the convergence of our estimation strategy by focusing on esti-

mation results for different numbers of draws. We estimate the VAR with the number of

draws for the orthonormal matrix Q between 10 and 1,000. Because we use 100 draws

on the posterior over B and Σu, this results in between 1,000 and 100,000 parameter

draws.7 For a given number of parameter draws N , we repeat the estimation procedure

100 times using different seed generators and compute the standard deviation of the 100

mean estimates.

Figure A.3 plots the standard deviations of the demand and supply slope estimates

across different seeds as a function of the parameter draws N , based on the ATM put

option sample. The results show that our implementation converges, since the standard

deviation of the estimates from different seeds decreases as the number of draws increases,

both for the supply and demand slopes. The standard deviation of the demand slope

estimates consistently exceeds that of the supply slope estimates; this suggests that for

our empirical application and this sample, the estimates of the slope of the supply curve

are more accurate than the estimates of the demand curve. We obtain similar findings

for the ATM call sample. For the OTM call and put option samples, we find that the

demand curves can be estimated more precisely than the supply curves. These results

are presented in Figure A.9.

5We first compute the price elasticities of demand and supply using all retained draws. Then we split
the retained sample into two groups: elastic demand (demand elasticity < −1) and inelastic demand
(demand elasticity > −1). Finally, we plot the histograms of price elasticities for these two groups.

6Table A.2 reports on the exercise in Table 3 in the paper based on the the median estimates.
7As outlined in Section 1 of this Online Appendix, we take 100 draws from the posterior over B

and Σu; then, for each draw of Σu, we take n draws of an orthonormal matrix Q. The variation in our
estimates largely results from the number of draws taken on the rotation matrix Q.
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Figure A.3: Convergence of the Slope Estimates

We plot the standard deviations of the demand and supply slope estimates for ATM put options
as a function of the number of parameter draws. For a given number of draws N (x-axis), we
repeat the estimation procedure 100 times under different seed generators. We use the mean
estimate of the slopes across the retained draws and compute the standard deviation of these
100 mean estimates. The supply slope (blue line with circle markers) is indicated on the left
y-axis, while the demand slope (red line with star markers) is indicated on the right y-axis.

2.4 The Choice of the Prior for the Impact Matrix

In the VAR estimations outlined in the main paper, we employed the uninformative

prior for the impact matrix A by assuming the standard Haar prior on the rotation

matrix Q. Nevertheless, using an uninformative prior for a parameter may result in an

informative prior for a non-linearly transformed quantity of that parameter, such as the

elasticity of the curves. As emphasized by Baumeister and Hamilton (2015), this situation

can introduce potential bias in set-identified models like ours, where the prior does not

asymptotically vanish.

To address this concern, we adopt the robustness analysis proposed by Baumeister and

Hamilton (2015). This method recommends placing the prior directly on the elasticities
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instead of the impact matrix and examining the behavior of the posterior distributions.

Consequently, we re-estimate the baseline VARs for at-the-money (ATM) and out-of-the-

money (OTM) calls and puts by assuming the truncated t-student prior proposed by

Baumeister and Hamilton (2015) with a mean of 0.1, signifying an inelastic prior.

Figures A.4 and A.5 illustrate the prior and posterior distributions of elasticities for

the four option samples. The data strongly rejects the inelastic prior, and the posteriors

visibly deviate from zero, particularly for the supply elasticity of ATM options. Table

A.1 presents the mean and mode of the posterior distributions and documents that they

are all well above one.

In conclusion, this analysis documents that the result regarding the elasticity of option

markets remains robust with respect to the choice of prior for the impact matrix.
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Figure A.4: Prior and Posterior for ATM Options

Panel B: ATM Puts

Prior and posterior for demand elasticity
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Panel A: ATM Calls
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The figure reports the prior (continuous red line) and posterior distribution (histogram)
of the elasticity of demand (left graphs) and the elasticity of supply (right graphs). The
sample considered are at-the-money put (Panel A) and call options (Panel B).
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Figure A.5: Prior and Posterior for OTM Options

Panel B: OTM Puts

Prior and posterior for demand elasticity
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Panel A: OTM Calls
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The figure reports the prior (continuous red line) and posterior distribution (histogram)
of the elasticity of demand (left graphs) and the elasticity of supply (right graphs). The
sample considered are out-of-the-money put (Panel A) and call options (Panel B).
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Table A.1: Mean and Mode of the Posterior Distributions

Demand Elasticity Supply Elasticity

Mean Mode Mean Mode
ATM Puts -18.45 -1.96 41.46 4.03
ATM Calls -6.45 -2.69 44.38 26.69
OTM Puts -33.83 -3.92 33.43 4.25
OTM Calls -43.61 -2.13 33.40 2.28

This table shows the mean and mode of the posterior distributions of demand and supply
elasticities of Figures A.4 and A.5.

3 The CBOE Open-Close Data

The database used to construct the quantity measure is the CBOE Open-Close database,

which reports daily end-user SPX order flow (buy versus sell initiated trades) for each

option series between January 1, 1996 and December 30, 2020. There is a structural

change in the CBOE Open-Close database in 2011 due to migration to the BATS platform

and technology. The data before 2011 differentiates exclusively between trades originating

from customers and firms. The sum of the trades for these two investor types constitutes

end-user net demand; market maker net demand is equal to minus end-user net demand.

Post-migration, the data provides more granularity on the origin of trades: it differ-

entiates between customers, firms, broker-dealers, professional customers, and market-

makers. We merge the two databases as follows. First, we verify that the classification

of firms and customers is the same across the two databases.8 We then observe that the

new dataset reports the trades of (almost) all participants in the option market. The

aggregated net demands from the new traders identified in the post-migration database,

i.e. broker-dealers, professional customers, and market makers, offset those from firms

and customers.9 Finally, we document that firms, customers, and market makers, collec-

tively account for 97% of the trades, leaving broker-dealers and professional customers

combined with a small part of the market.

In our analysis, we want to identify the net demand of non-market-makers. Accord-

ing to the CBOE classification of traders, broker-dealers and market makers are both

categorized as liquidity providers. Thus, in the post-migration database, end-user net

demand can be identified as the negative of the combined net demand from market mak-

ers and broker-dealers. Given the low market participation of professional customers, the

negative of the combined net demand from market makers and broker-dealers is almost

8We analyze eight overlapping years of the new and old data (from January 2011 to March 2019,
containing 3,741,172 observations); all moneyness and maturities are included. We find some discrep-
ancies between the new and old data; however, these mismatches seem negligible as the net demand of
firms and customers coincides 95% of the time between the old and new datasets. We therefore conclude
that the classification of firms and customers is the same across the two databases.

9Net demands from all trader groups sum to zero for about 98% of the records in the sample.
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identical to the sum of the net demand of firms and customers. Therefore, in order to be

consistent throughout the sample period, we compute end-user net demand NDt, both

in the pre- and post-2011 data. We confirm the validity of this approximation with a

robustness check by taking the negative of the combined net demand from market makers

and broker-dealers as a quantity measure, which we label as ND∗t .
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4 The Dynamic Impact of Demand and Supply

The VAR framework is also well suited for investigating the impact of demand and

supply (shocks) on net option demand and changes in implied volatility over time, using

the impulse response functions (IRFs) in Figure A.6. The red line in each plot reports

the average response of either price or quantity to supply or demand.

The average values at lag zero in each plot in Figure A.6 correspond to the entries in the A

matrix (averaged across retained draws): a11 and a12 are the contemporaneous responses

of price to demand and supply, whereas a21 and a22 are the contemporaneous responses

of quantity to changes in demand and supply.10 Under the imposed restrictions, both

types of shocks increase net demand on impact, yet the contemporaneous price impact is

negative for supply and positive for demand.

The impulse response functions are very similar for the four samples, i.e. ATM puts,

ATM calls, OTM puts, and OTM calls. The impacts of the shocks on net option demand

and changes in implied volatility are short-lived. Net demand responses die out within a

day or two. The responses of changes in option-implied volatility align with the imposed

sign restrictions on impact, but these responses reverse in sign the next day and then die

out quickly thereafter. This reversion in the sign of daily changes in implied volatility

is consistent with the mean-reverting characteristic of volatility and with the limits-to-

arbitrage hypothesis discussed in Bollen and Whaley (2004), which suggests that option

price changes are due to market makers diverting from their optimal inventory levels while

providing liquidity in option markets. As market makers correct their inventory the next

day, prices should revert, at least partially. Our findings on price reversal following a

demand shock thus support this limits-to-arbitrage hypothesis.

10Recall from the identification section in the paper that the slope estimates of the demand and
supply curves are a12/a22 and a11/a21 respectively. These ratios are calculated for each retained draw
of A. Note that the ratios of the contemporaneous IRFs in Figure A.6 do not perfectly match the slope
estimates for the demand and supply curves reported in Table 3 in the paper, because the average of
ratios does not equal the ratio of the averages.
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Figure A.6: Impulse Responses to Demand and Supply Shocks

We plot the changes in implied volatility and net demand for a one-standard deviation increase
in supply or demand. The mean impulse response is shown in red. The shaded area marks a
pointwise 68% credible interval around the median. The dashed lines mark a pointwise 95%
credible interval around the median.
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5 Other Supplementary Figures and Tables
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Figure A.7: Time-Series of Daily Supply and Demand

Panel A. ATM SPX Calls

Panel B. ATM SPX Puts

Panel C. OTM SPX Calls

Panel D. OTM SPX Puts

We plot the time-series of daily (latent) supply and demand in the ATM and OTM SPX call
and put option markets, estimated from the signed-restricted VAR on the whole sample period
(1996-2020).
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Figure A.8: Daily Option Implied Moments of S&P 500 Index Returns

We plot the time-series of 30-day risk-neutral variance, volatility, skewness, and kurtosis of the
S&P 500 index return from 1996 through 2020. We use the model-free methodology in Bakshi,
Kapadia, and Madan (2003) to extract the 30-day option implied moments using option data
available from OptionMetrics.
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Figure A.9: Convergence of the Slope Estimates - Different Samples

We plot the standard deviations of the demand and supply slope estimates for different sample
of options as a function of the number of parameter draws. For a given number of draws N
(x-axis), we repeat the estimation procedure 100 times under different seed generators. We use
the mean estimate of the slopes across the retained draws and compute the standard deviation
of these 100 mean estimates. The supply slope (blue line with circle markers) is measured on
the left y-axis, while the demand slope (red line with star markers) is measured on the right
y-axis.
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Table A.2: (Median) Demand and Supply Slopes and Price Elasticities

Panel A. Slope Estimates Based on the Sign-Restricted VAR

Demand Slope Supply Slope

(1) (2)

ATM Puts -37.21 31.94
[-868.46 ; -1.05] [4.06 ; 312.37]

ATM Calls -42.10 36.07
[-1311.12 ; -1.17] [5.28 ; 275.05]

OTM Puts -31.16 25.91
[-656.71 ; -1.12] [1.3 ; 705.44]

OTM Calls -28.78 24.00
[-339.75 ; -1.92] [1.19 ; 728.38]

Panel B. Standardized Slopes and Price Elasticities

1996-2020 2011-2020 2007-2009 2020
(1) (2) (3) (4)

Using Using Great COVID-19
ND ND* Recession
(a) (b)

Standardized Slope Estimates

Demand ATM Puts -1.06 -1.07 -1.07 -1.08 -0.98
ATM Calls -1.04 -1.02 -1.01 -1.00 -0.87
OTM Puts -1.08 -1.08 -1.08 -1.09 -1.07
OTM Calls -1.05 -1.02 -1.02 -1.05 -0.86

Supply ATM Puts 0.91 0.92 0.92 0.92 0.93
ATM Calls 0.89 0.90 0.91 0.90 0.84
OTM Puts 0.90 0.90 0.90 0.92 0.93
OTM Calls 0.87 0.86 0.86 0.89 0.73

Demand ATM Puts -14.81 -12.64 -12.69 -12.20 -11.70
ATM Calls -13.47 -10.43 -10.38 -10.42 -9.82
OTM Puts -15.03 -11.72 -11.73 -13.44 -11.51
OTM Calls -15.35 -10.78 -10.72 -11.45 -9.28

Supply ATM Puts 17.24 14.69 14.73 14.35 12.30
ATM Calls 15.73 11.81 11.50 11.63 10.23
OTM Puts 18.08 14.05 14.06 15.94 13.26
OTM Calls 18.41 12.84 12.72 13.51 10.95

Panel A reports the median and 95% credible interval of the supply and demand slopes for the SPX ATM
and OTM call and put markets; the estimates are multiplied by 105. Panel B reports the standardized
slope estimates and price elasticities of supply and demand for different sample periods calculated using
the median.
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Table A.3: Determinants of Demand and Supply – VAR with Alternative
Price Proxies and VAR with Risk Factors

Panel A Panel B Panel C Panel D
Variance Risk Premium Excess Volatility Implied Volatility VAR w/ Risk Factors

Demand Supply Demand Supply Demand Supply Demand Supply

Variables εDt εSt εDt εSt εDt εSt εDt εSt
RMt ATM Puts -0.33∗∗∗ 0.27∗∗∗ -0.32∗∗∗ 0.26∗∗∗ -0.39∗∗∗ 0.35∗∗∗ 0.00031 -0.00065

ATM Calls -0.38∗∗∗ 0.3∗∗∗ -0.34∗∗∗ 0.27∗∗∗ -0.41∗∗∗ 0.36∗∗∗ 0.00066 -0.00085
OTM Puts -0.37∗∗∗ 0.41∗∗∗ 0.00029 -0.00079
OTM Calls -0.37∗∗∗ 0.43∗∗∗ 0.00047 -0.00096

∆RVt ATM Puts 0.00 0.01 0.03∗∗∗ -0.03∗∗∗ 0.04∗∗∗ -0.03∗∗∗ 0.00002 -0.00026
ATM Calls 0.01 0.00 0.04∗∗∗ -0.03∗∗∗ 0.04∗∗∗ -0.03∗∗∗ 0.00006 -0.00029
OTM Puts 0.04∗∗∗ -0.04∗∗∗ 0.00002 -0.00025
OTM Calls 0.04∗∗∗ -0.04∗∗∗ 0.00002 -0.00027

∆Skewt ATM Puts -0.21∗∗∗ 0.2∗∗∗ -0.29∗∗∗ 0.27∗∗∗ -0.29∗∗∗ 0.28∗∗∗ 0.00017 -0.0002
ATM Calls -0.16∗∗∗ 0.11∗∗∗ -0.2∗∗∗ 0.16∗∗∗ -0.21∗∗∗ 0.17∗∗∗ 0.00033 -0.00026
OTM Puts -0.3∗∗∗ 0.27∗∗∗ 0.00019 -0.00024
OTM Calls -0.21∗∗∗ 0.22∗∗∗ 0.00021 -0.00031

∆Kurtt ATM Puts 0.23∗∗∗ -0.2∗∗∗ 0.32∗∗∗ -0.28∗∗∗ 0.32∗∗∗ -0.29∗∗∗ -0.05887 0.07029∗

ATM Calls 0.22∗∗∗ -0.18∗∗∗ 0.29∗∗∗ -0.25∗∗∗ 0.3∗∗∗ -0.26∗∗∗ 0.02587 -0.04378
OTM Puts 0.32∗∗∗ -0.29∗∗∗ -0.07784. 0.07977∗

OTM Calls 0.31∗∗∗ -0.31∗∗∗ 0.04972 -0.03958
∆TEDt ATM Puts 0.08 0.1 1.00∗ -0.92∗ 1.21∗∗∗ -1.14∗∗ 0.00669 0.04848

ATM Calls -0.1 -0.38 0.72. -1.36∗∗∗ 0.89∗ -1.61∗∗∗ -0.41462 -0.41436
OTM Puts 1.15∗∗∗ -1.12∗∗ -0.36615 0.31261
OTM Calls 1.39∗∗∗ -1.17∗∗∗ 0.25207 0.23139

∆CDSt ATM Puts 0.01 -0.03. 0.01 -0.03. 0.02. -0.03∗ -0.00866 -0.00702
ATM Calls 0.04∗∗∗ 0.00 0.04∗∗∗ 0.00 0.05∗∗∗ -0.01 0.01836. 0.01383
OTM Puts 0.03∗ -0.02∗∗ 0.00466 0.00138
OTM Calls 0.03∗ -0.03∗∗ 0.00314 -0.00314

∆Wealtht−1 ATM Puts -12.58 131.20∗∗∗ 6.64 108.71∗∗∗ 20.06 94.90∗∗ 57.28∗ 47.06
ATM Calls -24.94 -98.75∗∗ -2.91 -133.18∗∗∗ -1.73 -135.37∗∗∗ -11.62 -124.64∗∗∗

OTM Puts 84.91∗ 48.78 30.97 60.94∗∗

OTM Calls -14.12 -23.96 3.02 -16.55
∆InvRiskt−1 ATM Puts 0.04 1.11. 0.11 1.21. 0.1 1.20. 0.76 0.23

ATM Calls -0.31 0.38 -0.26 0.41 -0.31 0.49 -0.24 0.39
OTM Puts 1.64∗∗ 2.00∗∗ 0.69. 2.17∗∗∗

OTM Calls 0.91. 0.03 0.18 0.56
∆BidAskt ATM Puts 0.17∗∗∗ -0.10∗∗ 0.21∗∗∗ -0.13∗∗∗ 0.25∗∗∗ -0.18∗∗∗ 0.17∗∗∗ -0.11∗∗

ATM Calls 0.18∗∗∗ -0.12∗∗ 0.20∗∗∗ -0.18∗∗∗ 0.24∗∗∗ -0.22∗∗∗ 0.09∗ -0.07.
OTM Puts 0.46∗∗∗ -0.48∗∗∗ 0.32∗∗∗ -0.34∗∗∗

OTM Calls 0.51∗∗∗ -0.42∗∗∗ 0.23∗∗ -0.12
IFt ATM Puts -14.40∗∗∗ 13.87∗∗∗ -14.26∗∗∗ 13.43∗∗∗ -18.15∗∗∗ 18.18∗∗∗ 2.09 0.16

ATM Calls -18.31∗∗∗ 14.42∗∗∗ -18.50∗∗∗ 14.49∗∗∗ -21.99∗∗∗ 18.76∗∗∗ 1.81 -1.05
OTM Puts -19.46∗∗∗ 19.75∗∗∗ -0.66 -0.69
OTM Calls -18.31∗∗∗ 23.91∗∗∗ 1.67 0.08

We present results on univariate regressions of supply or demand in the ATM and OTM SPX call and
put option markets on the realized return on the S&P 500 RM

t , and daily changes in the following
variables: realized market volatility RVt, non-standardized risk-neutral skewness (Skewt) and kurtosis
(Kurtt) with 30 days to maturity as in Bakshi, Kapadia, and Madan (2003), the TED spread, the CDS
spread, market-maker wealth and inventory risk calculated as in Fournier and Jacobs (2020), the option
bid-ask spread, and the intermediary constraint measure IFt of He, Kelly, and Manela (2017). Demand
and supply are estimated with the sign-restricted VAR using the following price variables: i) the variance
risk premium (Panel A), computed as in Bekaert and Hoerova (2014) with the difference between the
option implied volatility and the conditional forward looking realized volatility over the next month, ii)
the excess volatility used by Gârleanu, Pedersen, and Poteshman (2009) (Panel B), computed as the
difference between the option implied volatility and the risk neutral volatility estimated following the
model of Bates (2006), and iii) the risk neutral implied volatility (Panel C). Panel D reports results based
on the extended VAR, which includes some of the risk factors. The quantity variable is the net demand
NDt used in the baseline specification. T-statistics are computed based on Newey-West standard errors
with twenty lags and *, **, and *** indicate significance at the 5%, 1%, and 0.1% level respectively.
Skewt, Kurtt, and CDS spread are multiplied by 104.
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Table A.4: Forecasting with Demand and Supply

Dependent Variable: RSP500
t+1

Univariate Demand Supply

Panel A. OTM Put Options

εDt 5.46 -3.43∗ -3.94∗

[1.40] [-2.18] [-2.28]

εSt -7.91∗∗ -4.30∗ -2.50
[-3.14] [-2.37] [-1.14]

NDt -0.86
[-0.28]

∆σt 5.53∗ 0.61 7.32
[2.26] [0.21] [1.54]

εDt ×Dt 30.10∗∗ 29.76∗

[3.08] [2.50]

εSt ×Dt -10.65. 5.72
[-1.80] [0.70]

Dt 4.04 3.97 4.19 4.03
[1.12] [1.08] [1.16] [1.10]

R2 (%) 0.24 0.50 -0.01 0.87 1.89 1.99 0.70 1.25

Panel B. ATM Put Options

εDt 8.33∗ 3.58 0.89
[2.11] [1.41] [0.31]

εSt -7.02. -0.14 1.04
[-1.71] [-0.04] [0.31]

NDt 3.77
[0.94]

∆σt 5.87. 7.61∗ 6.08
[1.96] [2.51] [1.44]

εDt ×Dt 14.5100 -1.55
[1.27] [-0.16]

εSt ×Dt -20.44∗ -6.71
[-2.09] [-0.85]

Dt 6.49. 5.95 5.94 5.84
[1.72] [1.57] [1.60] [1.55]

R2 (%) 0.49 0.32 0.01 0.80 0.85 1.22 0.98 1.25

We report results for predictive regressions using the next-day S&P500 return. The explanatory
variables are: demand and supply (εDt and εSt ) obtained from the sign-restricted VAR applied
to the sample of OTM and ATM put options, the quantity variable, i.e. net demand NDt

(scaled by 104), and the price variable, i.e. changes in implied volatility ∆σt. Dt is a dummy
variable, with Dt = 1 when εSt × εDt < 0 and 0 otherwise. The dependent variable is multiplied
by 104. T-statistics computed based on Newey-West standard errors with twenty lags are in
square brackets. ‘.’, *, **, and *** indicate significance at the 10%, 5%, 1%, and 0.1% level
respectively.
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Table A.5: Predictability in the Chen, Joslin, and Ni (2019) Sample

Dependent Variable: Next-Month S&P 500 Return

Panel A. Full Sample (1996 - 2020)

εDt -0.06 -0.14
[-0.77] [-1.32]

εSt -0.19∗ 0.01
[-1.97] [0.13]

NDCJN,t -0.06. -0.05 -0.05
[-1.67] [-1.41] [-1.49]

∆σt -13.10∗

[-2.46]
εDt ×Dt 0.36

[1.21]
εSt ×Dt -0.57∗∗∗ -0.54∗∗∗ -0.61∗∗∗

[-4.84] [-5.47] [-4.73]
Dt -0.04 0.05 0.20 0.15

[-0.07] [0.10] [0.36] [0.30]
R2 (%) -0.09 2.38 1.87 0.74 7.13 8.66 10.03

Panel B. CJN Sample (1996 - 2012)

εDt -0.14 -0.21∗

[-1.39] [-2.09]
εSt -0.26∗∗∗ -0.05

[-3.30] [-0.53]
NDCJN,t -0.23∗∗ -0.21∗∗ -0.20∗∗

[-3.19] [-3.17] [-3.13]
∆σt -6.81.

[-1.69]
εDt ×Dt 0.23

[1.19]
εSt ×Dt -0.46∗ -0.42∗∗ -0.44∗∗

[-2.03] [-2.61] [-2.71]
Dt 0.39 0.53 0.78 0.72

[0.51] [0.68] [1.21] [1.16]
R2 (%) 0.46 2.28 7.44 0.24 3.71 10.3 10.27

We present the results from regressing next month’s S&P500 return on the net demand quan-
tity variable proposed by Chen, Joslin, and Ni (2019), NDCJN,t. We also present predictive
regressions for the supply and demand from the sign-restricted VAR estimated using NDCJN,t

as the quantity variable and ∆σt as the price variable. The sign-restricted VAR is estimated
using daily data and the monthly demand and supply εDt and εSt are obtained by summing
the estimated daily quantities over each month. Dt is a dummy that equals one in the months
when demand and supply diverge on most days of the month. The market return variable is
multiplied by 102, while the net demand variable is scaled by 104.
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Table A.6: A VAR with Risk Variables and Robustness Tests

Panel A. Estimation of Demand and Supply Using a VAR with Risk Variables

Demand Curve Supply Curve 1-Step
Ahead

Slope Elasticity Slope Elasticity OLS FEVD
(1) (2) (3) (4) (5) (6)

ATM Puts -127.98 -3.94 32.26 15.61 0.96*** 5.65***
[-436.35 ; -0.62] [1.65 ; 170.49] [3.85] [36.29]

ATM Calls -147.14 -3.40 46.93 10.66 0.73* 3.23***
[-547.94 ; -0.83] [1.51 ; 279.93] [2.38] [23.26]

OTM Puts -54.03 -7.63 79.80 5.17 0.03 -1.02***
[-268.71 ; -0.63] [0.56 ; 312.16] [0.12] [-6.18]

OTM Calls -74.32 -5.19 50.43 7.64 0.20 0.56***
[-345.77 ; -0.55] [0.72 ; 241.98] [1.11] [3.74]

Panel B. Robustness Tests on Various Option Maturities

Elasticity 1-Step Ahead

Demand Curve Supply Curve FEVD

Maturity T1 T2 T3 T1 T2 T3 T1 T2 T3

ATM Puts -2.44 -4.14 -10.73 8.65 10.32 32.84 9.62*** 3.11*** 3.99***
ATM Calls -1.44 -4.98 -25.24 8.82 13.87 13.60 14.7*** 10.22*** -0.96***
OTM Puts -3.40 -13.10 -16.72 1.06 2.95 9.79 -0.23*** -5.94*** -1.39***
OTM Calls -7.45 -13.05 -24.39 2.54 1.86 9.86 -6.02*** -5.04*** -0.54***

Demand Curve Supply Curve 1-Step
Ahead

Slope Elasticity Slope Elasticity OLS FEVD
(1) (2) (3) (4) (5) (6)

Panel C. Robustness Tests with Variance Risk Premium as Price Variable

ATM Puts -195.27 -0.36 50.43 1.4 2.04*** 8.73***
[-665.08 ; -0.82] [3.08 ; 250.78] [3.82] [612.91]

ATM Calls -189.98 -0.36 56.85 1.22 2.48*** 9.11***
[-800.45 ; -0.95] [3.72 ; 276.16] [4.48] [629.15]

Panel D. Robustness Tests with Excesss Volatility as Price Variable

ATM Puts -447.43 -0.22 63.00 1.55 1.45* 7.38***
[-895.23 ; -0.95] [2.26 ; 360.16] [2.38] [590.26]

ATM Calls -352.52 -0.28 60.32 1.66 2.89** 10.62***
[-899.75 ; -1.02] [4.1 ; 286.05] [2.86] [655.2]

Panel E. Robustness. VAR Consistent with Put-Call Parity

ATM -214.37 -1.99 38.43 11.09 4.18*** 22.33***
[-755.25 ; -0.79] [5.01 ; 136.28] [5.34] [778.35]

All Moneyness -131.97 -2.31 46.95 6.50 0.7* 2.53***
[-692.11 ; -0.64] [1.18 ; 291.68] [2.12] [346.77]

Panel A reports on the estimation of a VAR with risk variables. We report the mean and 95% credible
interval of the supply and demand slopes for the SPX ATM and OTM call and put markets (columns
(1) and (3)), the price elasticities (columns (2) and (4)), and the difference between the means of the
one-step ahead forecast error variance decompositions (FEVD) of price and quantity attributable to
demand versus that attributable to supply (column (6)). For comparison, column (5) presents the OLS
estimates. Panel B presents the elasticities of supply and demand and the one-step ahead FEVD for
samples of options with different maturities (15-45, 46-195, and 196-365 days). Panels C and D report
robustness tests using different price variables. Panel E reports on the estimation of a VAR consistent
with the put-call parity relation for ATM options, and on the estimation of a VAR where prices and
quantities are aggregated across all options.
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Gârleanu, Nicolae, Lasse Heje Pedersen, and Allen M Poteshman, 2009, Demand-based
option pricing, Review of Financial Studies 22, 4259–4299.

Hasbrouck, Joel, 1991, Measuring the information content of stock trades, Journal of
Finance 46, 179–207.

Hasbrouck, Joel, 1993, Assessing the quality of a security market: A new approach to
transaction-cost measurement, Review of Financial Studies 6, 191–212.

He, Zhiguo, Bryan Kelly, and Asaf Manela, 2017, Intermediary asset pricing: New evi-
dence from many asset classes, Journal of Financial Economics 126, 1–35.

27



Inoue, Atsushi, and Lutz Kilian, 2013, Inference on impulse response functions in struc-
tural VAR models, Journal of Econometrics 177, 1–13.

Kilian, Lutz, and Helmut Lütkepohl, 2017, Structural vector autoregressive analysis.
(Cambridge University Press).

Kilian, Lutz, and Daniel P Murphy, 2012, Why agnostic sign restrictions are not enough:
understanding the dynamics of oil market VAR models, Journal of the European Eco-
nomic Association 10, 1166–1188.

Sims, Christopher A, 1980, Macroeconomics and reality, Econometrica: Journal of the
Econometric Society 48, 1–48.

Sims, Christopher A, 1986, Are forecasting models usable for policy analysis?, Quarterly
Review 10, 2–16.

Uhlig, Harald, 2005, What are the effects of monetary policy on output? Results from
an agnostic identification procedure, Journal of Monetary Economics 52, 381–419.

Uhlig, Harald, 2017, Shocks, sign restrictions, and identification, Advances in Economics
and Econometrics 2, 95.

28


	Identifying Demand and Supply Equations Using Sign-Restricted VARs
	The Sign-Restricted VAR Approach: Discussion
	Interpreting the Results from Sign-Restricted VARs
	The Distribution of the Admissible Set
	Convergence
	The Choice of the Prior for the Impact Matrix

	The CBOE Open-Close Data
	The Dynamic Impact of Demand and Supply
	Other Supplementary Figures and Tables

